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Abstract: The effect of raw materials on the compressive strength of concrete is a complex process, especially 

in the case of ultra-high-performance concrete (UHPC), where a higher number of inter-dependent parameters 

are involved in the strength development. In this era of digitalization, advanced machine learning methods are 

used to predict the material's mechanical characteristics because of their superior performance compared to 

conventional and nonlinear statistical regression models. Thus, the goal of the current study is to estimate the 

compressive strength of UHPC from the designed raw materials using advanced machine learning techniques. 

The compressive strength of UHPC is predicted from the 14 input parameters, i.e., cement, fly ash, slag, silica 

fume, nano-silica, limestone powder, sand, coarse aggregate, quartz powder, water, superplasticizer, PE fiber, 

steel fiber, and curing time. A total of eight machine learning models were compared that include multi-layer 

perceptron neural network (MLPNN), MLPNN Bootstrap aggregating (MLPNN-BA), MLPNN adaptive 

boosting (MLPNN-AB), Gradient boosting (GB), Decision tree (DT), DT Bootstrap aggregating (DT-BA), 

DT adaptive boosting (DT-AB) and Random Forest (RNF). The validation and performance evaluation of the 

above models were checked by using K-fold cross-validation, mean absolute error (MAE), root mean square 

error (RSME), coefficient of determination (R2), relative root mean square error (RRMSE), performance index 

(PI), and Nash Sutcliffe efficiency (NSE). The optimal model was selected based on the results of all statistical 

checks. It was found the ensembled machine learning models especially decision tree-based models 

outperform the neural network-based models with higher accuracy and low error. Thus, the recommended 

machine learning model is random forest having superior prediction capacity followed by DT Bootstrap 

aggregating and DT adaptive boosting. 
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1. Introduction 

Ultra-high-performance concrete (UHPC), as 

a major development in concrete technology in the 

past two decades, has been used for various civil 

engineering applications [1-9]. UHPC usually has 

a 28d compressive strength of UHPC greater than 

120 MPa and a dense microstructure. Nowadays, 

different chemical admixtures and minerals are 

usually incorporated in concrete depending on 

strength and durability requirements [10]. Based 

on the heterogeneous nature of concrete, it is quite 

complex to predict its accurate compressive 

strength along with its prevailing factors. The 

mechanical properties of UHPC rely on different 

parameters like w/c ratio, the content of cement, 

filler, fibers properties, type of pozzolana and 

superplasticizers, etc. The basic ingredients of 

UHPC are shown in Figure 1. When the UHPC is 

reinforced with fibres, the formed ultra-high-

performance fiber-reinforced concrete (UHPFRC) 

has even more complex material properties, which 

are affected by dosages of cement, supplementary 

cementitious materials (SCMs), and fibers (single 

or hybrid type). It is worth mentioning that 

laboratory testing consumes extensive time and 

cost. Probabilistic models can be implemented to 

predict the concrete mechanical properties to avoid 

time and cost consumed in labor-intensive 

laboratory processes [11]. However, the 

applicability of such models for UHPC is still 

questionable because of UHPC is involved with the 

use of various material components that can have 

complex inter-relations [11-13].  For instance, in 

the case of UHPFRC having various SCMs and 

fibers, accurate prediction  cannot be achieved by 

using traditional techniques due to the multiple 
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numbers of parameters [13]. Exploring an effective 

computational approach for predicting the 

hardened properties of UHPC is becoming a 

critical consideration of engineers and designers 

recently.  

 

Fig. 1 – Basic ingredients of UHPC  

Multiple statistical techniques have been 

implemented to forecast concrete mechanical 

characteristics in past decades. Among these, the 

more prominent are linear, multilinear, and 

nonlinear regression methods [14-17]. Machine 

Learning (ML) based on data analysis techniques 

are also gaining popularity in different study areas 

[18-22], by which a robust and precise prediction 

model for the compressive strength of concrete 

could be developed upon analyzing crucial data 

[23-26]. In recent studies, artificial neural network 

(ANN) and Decision trees (DT) have come out 

with more potential for predicting the more 

accurate compressive strength [27-29]. Previously, 

the individual artificial learning model-based 

prediction systems were used for prediction. 

Nowadays, several studies resulted in more 

accurate predictions of ensemble ML techniques 

than individual ML techniques, which is why 

ensemble machine learning methods have more 

popularity for cementitious materials [30]. In the 

ensemble ML, multiple learning algorithms are 

used which may achieve a more accurate prediction 

performance than any constituent learning 

algorithm alone. The ensemble ML techniques 

operate differently; such approaches usually train 

various weak learners initially by deploying 

training data and then converting the weak learners 

into stronger ones. These weak learners are 

individual approaches like a decision tree. 

Consequently, the exploration of ML techniques 

needs to be investigated for assisting researchers 

and engineers in developing the prediction models 

to optimize UHPC mixes. Therefore, ensemble and 

individual ML methods are compared in the 

present study to identify a superlative model to 

estimate the compressive strength of UHPC.  

Nowadays, predicting results with minimum 

variation in experimental outcomes has been 

widely evaluated using machine learning (ML) 

techniques. In experimental procedures, there is a 

detailed casting and testing procedure having 

multiple parameters that take a lot of time, effort, 

and cost. This raises the need for the development 

of algorithms that are based on modeling through 

data, accorded with the identification of closely 

related independent variables and swiftly 

decreasing the input matrix dimensionality. In an 

alternative manner, the compressive strength of 

UHPC can also be proposed for prediction by using 

machine learning algorithms. Therefore, in this 

study, different individual and ensembled ML 

techniques are used for estimating the compressive 

strength of UHPC. Two different types of analysis 

approaches are used individual and ensembled ML 

techniques, i.e., neural network-based approach for 

multi-layer perceptron neural network models and 

tree-based approach for decision tree models. 

Furthermore, an optimal model from both network-

based and tree-based models is established. In a 

nutshell, suitable ensemble learning techniques are 

recommended in this study for estimating UHPC 

compressive strength accurately.  

2. Machine learning models  

2.1 Multi-layer perceptron neural network 

(MLPNN) 
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For MLPNN, the nodes are often organized 

sequentially to form a chain of layers, with one or 

more hidden units between each layer, as shown in 

Figure 2. The first stage of the input function is the 

input data. After that, the hidden layer(s) receives 

inputs with varied weights dependent on the 

architectures. The network's updated outputs are 

almost identical to the observed result after the 

included bias term. Several ANN architectures 

employ MLPNN; however, they are usually trained 

using a backward propagation of errors technique 

[31]. But all nodes other than the input nodes are 

subject to nonlinear activation functions, most 

often sigmoid functions. MLPNN is unique in that 

each neuron in a layer is linked by weights to all of 

the neurons in the following layer, allowing for 

independent computations on input data. The 

procedure is reversed after the feed-forward 

iteration is complete. During this cycle, a backward 

propagation of errors technique would be used to 

change the weights in the network until the desired 

fitness level is achieved [32].  

 
Fig. 2 – Multi-layer perceptron neural network [32] 

2.2. Decision tree (DT) 

A subclass of machine learning known as a 

"decision tree" has a tree-like shape with nodes 

and branches (refer to Figure. 3). A leaf is a node 

that does not have any outer corners, while an inner 

node has these features. The classification and 

regression problems case are divided into several 

classes via internal conscious planning to a 

particular function. The training process can 

observe a decision-making forest from a set of 

examples. The most influential decision tree may 

be found by decreasing the fitness function. The 

dataset is divided many times for every variable. 

The gap between the predicted and experimental 

values of the pre-specified optimization process at 

each division point. Each parameter has an 

identical number of errors, and a difference 

between the two terms has been determined based 

on the worst fitness function values. For the benefit 

of the model, this process is continuously 

performed until optimal performance is achieved 

[33]. 

 

2.3. Bootstrap aggregating and adaptive 

boosting 

The optimization of machine learning 

activities is accomplished via ensemble techniques 

by combining and combining a large number of 

inferior forecasts (i.e., sub-models of components). 

The methodologies of these ensemble techniques 

support alleviating the issues associated with 

excessive training data. It is feasible to build a 

massive number of sub-models/classifier parts (1, 

2, 3,…., n-1, n) because of the careful manipulation 

of the dataset. This might result in a more efficient 

learner. On the other side, the ideal classification 

method may be constructed by aggregating 

combined operations on sub-models that have been 

independently confirmed. Bagging, along with the 

bootstrap interpolation approach and advantage 

collation, is widely regarded as one of the 

industry's most commonly used ensemble 

modeling techniques. The quality model is 

substituted with the first training set (bootstrap 

trials up to the training set size), which is then 

changed by the second training set. Many data sets 

may present many instances in models, while 

others may not show. Finally, the final result is 

generated by averaging the outcomes of the 

component models. As a result of its widespread 

application, bagging and other ensemble modeling 

approaches such as the bootstrap interpolation 

strategy and benefit collation is often recognized as 

one of the most commonly utilized approaches. 

After the first training set (bootstrap trials up to the 

training set size) has been replaced for the quality 

model, the second training set alters the quality 

model, and so on. It is feasible that many data 

groups will produce repeated examples in models, 

and some may not produce any cases in any model. 

Eventually, the overall result is obtained by taking 

the average of the results of the component models 

and adding them together. 
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Fig. 3 – Decision tree [34] 

2.4. Gradient boosting (GB) 

When a series of simple base classifiers are 

combined, a panel outperforms any single base 

classification. Boosting is based on the idea of 

adding new models to an ensemble classifier one at 

a time. The failure of the whole ensemble is taught 

to a new model for worse basic learner model with 

each repetition. The optimization issue is 

addressed in an ensemble of weak forecasts and is 

constructed using the gradient descent technique. 

So, it may be utilized for classification and 

regression-based tasks. The GB has three parts: the 

gradient booster, the additive model, a weak 

learner, and the loss function. In order to maximize 

the connection between new basic instructors and 

the negative Gradient of loss factor associated with 

the whole ensemble, this method employs a 

number of different techniques. When the 

functional form is the conventional square-error 

loss, then error-fitting might occur. In general, it is 

up to the researchers to choose the loss function, 

where they have access to a wide variety of loss 

functions and may apply their own undertaking 

losses if they choose so [35]. Gradient descent is 

used by GB to attempt a numerical solution to the 

error function issue. Any variational loss function 

may be used to calculate the GB gradient, which is 

the reverse Gradient of the loss function assessed 

(see Figure 4).  

2.5. Random Forest 

The Random Forest Regression (RF) 

approach has been widely employed for decision 

tree algorithms by combining a high number of 

points from a decision tree with bootstrap and 

aggregation ideas. The development of each tree is 

controlled by a randomized set of predictor 

variables in this model, which is also termed as 

random forest. All current decision trees are 

converged using bagging (i.e., bootstrap 

aggregation) [37]. Random forests build each tree 

using a replacement sample, as demonstrated in 

Figure 5. Members of the ensemble will use a 

bootstrap set of pre-prints drawn from the training 

data set. Separation through tree development no 

longer allows for the classification split task that 

was previously recommended. The best possible 

split over a random subset of characteristics is the 

one that is not chosen. As a result of this inherent 

unpredictability, forest bias tends to grow with 

time (as regards the bias of a single non-random 

tree) [31]. Its standard deviation is also lowered, 

which generally more than balances the increase in 

bias, resulting in a technically better forecast 

because of the average. All decision trees averaged 

goal values are used to create an output data point 

in the regression framework (RF). After then, the 

combined reaction level of all trees is calculated. 
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Fig. 4 – Gradient boosting [36] 

 

 

Fig. 5 – Random forest 

3. Experimental data set  

The statistical summary of the data set for 14 

input variables and one output variable 

(compressive strength) is shown in Table 1. The 

data set was taken from the literature [38]. 

However, pre-screening was done on the available 

data set, and 271 mix proportions of UHPC were 

selected within the range of 120 MPa to 182 MPa. 

The reason for pre-screening was to avoid variation 

of the experimental data because of the different 

physical and chemical compositions of UHPC raw 

materials. The input parameters include cement, fly 

ash, slag, silica fume, nano-silica, limestone 

powder, sand, coarse aggregate, quartz powder, 

water, superplasticizer, PE fiber, steel fiber, and 

curing time. The correlation graph of raw materials 

for UHPC is illustrated in Figure 6. In this study, 

the maximum absolute value of the correlation 

coefficient is 0.65, which indicates that 

multicollinearity does not occur and the input 

parameters of the selected mix proportion are 

reliable for prediction. The multicollinearity occurs 

because of the strong correlation between input 

parameters which may lead to the misinterpretation 

of the effect of input variables. It was reported that 

multicollinearity occurs if the absolute value of the 

correlation coefficient is higher than 0.70 [39]. The 

relative distribution of some input and output 

parameters is shown in Figure 7. The compressive 

strength (output) was predicted from the 14 input 

variables. Table 1 demonstrates the mean, standard 

error, standard deviation, range, minimum and 

maximum values of the input variable used in the 

current study. The compressive strength of UHPC 

was predicted with the help of python coding used 

in Spyder of Anaconda software. The predicted 

results of all models for compressive strength of 

UHPC are discussed in the next section. 
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Fig. 6 – The Pearson correlation of input parameters 

   

   
Fig. 7 – Relative distribution of some input and output parameters 
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Table 1. Descriptive analysis of data set 

Parameters Mea

n 

Standard 

Error 

Standard 

Deviation 

Rang

e 

Minimu

m 

Maximu

m 

Cement (kg/m3) 711 11 175 1007 270 1277 

Fly ash (kg/m3) 14 4 60 475 0 475 

Slag (kg/m3) 63 8 128 750 0 750 

Silica fume (kg/m3) 132 5 84 291 0 291 

Nano silica (kg/m3) 10 2 38 275 0 275 

Limestone powder (kg/m3) 51 9 145 1058 0 1058 

Sand (kg/m3) 860 20 336 1096 408 1503 

Coarse aggregate (kg/m3) 350 29 471 1299 0 1299 

Quartz powder (kg/m3) 27 6 107 730 0 730 

Water (kg/m3) 173 1 24 196 90 286 

Superplasticizer (kg/m3) 24 1 11 47 5 52 

PE fiber (%) 0 0 0 2 0 2 

Steel fiber (%) 1 0 1 3 0 3 

Curing time (days) 91 9 143 727 3 730 

Compressive strength 

(MPa) 

141 1 17 62 120 182 

4. Modeling results and discussion 

Figure 8 presents the plot between 

experimental data and estimated values of multi-

layer perceptron neural network (MLPNN) for 

compressive strength of UHPC, where a 

reasonable agreement is seen with a medium level 

of variation. The accuracy of estimated results was 

assessed by evaluating the value of R2 in Table 2. 

The more scattered experimental and estimated 

values for the individual neural network-based 

model (MLPNN) exhibit less accuracy for 

predicting the compressive strength of UHPC 

Figure 8(a). On the other hand, ensembled 

MLPNN models (Bootstrap aggregating and 

adaptive boosting) presented better results than 

individual MLPNN, as evident from the higher 

value of R2 in Table 2. The R2 value for MLPNN, 

MLPNN-BA, and MLPNN-AB were 0.74, 0.78, 

and 0.75, respectively. The lower performance of 

the MLPNN model with the higher error was 

observed compared to that of other ensembled 

models. The maximum error values between 

experimental and predicted values for MLPNN, 

MLPNN-BA, and MLPNN-AB were 27.6 MPa, 

25.4 MPa, and 25.5 MPa, respectively, for 

compressive strength of UHPC (see Figure 9 (a)-

(c)). At the same time, for the 63%, 69%, and 64% 

of the predicted results, the error difference 

between experimental and estimated values were 

less than 5 MPa for MLPNN, MLPNN-BA, and 

MLPNN-AB, respectively. This means that the 

MLPNN-BA exhibited low error with higher 

accuracy than that of MLPNN and MLPNN-AB 

model. Compared to that individual model, the 

better progressive performance (better predictions) 

and robustness (dispersion of the predictions) of 

ensembled machine learning models were 

observed. The improved performance of 

ensembled machine learning models was due to the 

combined use of multiple sub-models. The better 

predictive performance of the best model was 

selected from the analyzed 20 sub-models in 

ensembled machine learning models. The 

performance of MLPNN-BA was better than 

MLPNN-AB because MLPNN-AB increases the 

complexity by underfitting the training data.   
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(a) Multi-layer perceptron neural network (MLPNN) (b) MLPNN Bootstrap aggregating 

  
(c) MLPNN adaptive boosting (d) Gradient boosting 

Fig. 8 – Plot of experimental data and predictions: (a) Multi-layer perceptron neural network (MLPNN); (b) MLPNN 

Bootstrap aggregating; (c) MLPNN adaptive boosting; (d) Gradient boosting 

 

  

(a) Multi-layer perceptron neural network 

(MLPNN) 

(b) MLPNN Bootstrap aggregating 

  

(c) MLPNN adaptive boosting (d) Gradient boosting 

Fig. 9 – Data points of experimental and predictions with error: (a) Multi-layer perceptron neural network 

(MLPNN); (b) MLPNN Bootstrap aggregating; (c) MLPNN adaptive boosting; (d) Gradient boosting 

Table 2. Statistical checks for all models 
Sr 

No. 
Model description 

MAE 

(MPa) 

RSME 

(MPa) 
R2 

RRMSE 

(%) 
PI NSE 

1 MLPNN 8.68 10.97 0.74 7.56 0.040 0.52 

2 
MLPNN Bootstrap aggregating (MLPNN-

BA) 
8.22 10.30 0.78 7.25 0.041 0.60 

3 MLPNN adaptive boosting (MLPNN-AB) 8.87 10.85 0.75 7.65 0.044 0.55 

4 Gradient boosting (GB) 6.24 9.79 0.81 6.87 0.038 0.63 

5 Decision tree (DT) 6.68 10.33 0.79 7.25 0.041 0.59 

6 DT Bootstrap aggregating (DT-BA) 5.28 7.10 0.90 4.93 0.026 0.81 

7 DT adaptive boosting (DT-AB) 5.61 7.53 0.89 5.23 0.028 0.78 

8 Random Forest (RNF) 5.10 6.76 0.91 4.68 0.020 0.83 
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The relationship between the experimental 

and predicted values of compressive strength for 

decision tree-based models is shown in Figure 10. 

The closer data point of ensemble decision tree 

models showed higher accuracy than that of 

individual machine learning models. However, the 

random forest machine learning model presented 

better prediction results of UHPC compressive 

strength than that of other ensembled machine 

learning models (DT-BA and DT-AB). The R2 

value of compressive strength for DT, DT-BA, 

DT-AB and RNF are 0.79, 0.90, 0.89 and 0.91, 

respectively. The higher performance of the 

ensembled DT model with the low error was 

observed compared to that of individual DT 

models. The reason was that the ensemble model 

aims to reduce the variance of data and bring the 

predicted values closer to that mean. The 

maximum error values between experimental 

compressive strength and predicted values of DT, 

DT-BA, DT-AB, and RNF are 47.3 MPa, 21.5 MPa, 

27.4 MPa, and 16.3 MPa, respectively (see Figure 

11(a)-(d)). For DT, DT-BA, DT-AB, and RNF, the 

error values of 80%, 86%, 82%, and 88% between 

experimental and estimated results were less than 5 

MPa, respectively. This indicates a very higher 

accuracy with a low error rate of the RNF model 

than that of DT, DT-BA, and DT-AB for 

compressive strength prediction of UHPC. The 

improved performance of ensembled machine 

learning models was due to the combined use of 

multiple decision trees for the optimal predictive 

performance of UHPC compressive strength. In 

general, the better performance of decision tree 

models was observed than that of neural network-

based models. Thus, the ensembled decision tree 

model (Random Forest) is suggested for estimating 

the accurate and precise results of UHPC 

compressive strength.   

  
(a) Decision tree (b) Decision tree Bootstrap aggregating 

  
(c) Decision tree adaptive boosting (d) Random Forest 

Fig. 10 – Plot of experimental data and predictions: (a) Decision tree; (b) Decision tree Bootstrap 

aggregating; (c) Decision tree adaptive boosting; (d) Random Forest 
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(a) Decision tree (b) Decision tree Bootstrap aggregating 

  
(c) Decision tree adaptive boosting (d) Random Forest 

Fig. 11 – Data points of experimental and predictions with error: (a) Decision tree; (b) Decision tree 

Bootstrap aggregating; (c) Decision tree adaptive boosting; (d) Random Forest 

5. Validation and performance evaluation 

of all models   

The induvial and ensembled machine learning 

techniques were considered to estimate the 

compressive strength (output) of UHPC from its 

raw ingredients (input parameters). K-fold cross-

validation is used to evaluate a model's accuracy 

using data samples [32, 40-42]. Figure 12 

demonstrates the flowchart of K-fold cross-

validation. The training dataset is primarily divided 

into k folds of equivalent size, and the model is then 

tested on one of the folds while the others are 

trained. The trained model's loss function is then 

assessed. After the k folds are completed, the mean 

loss function is used to select the model. The 

training dataset is divided into ten k folds. The K-

fold cross-validation of all models with MAE and 

RMSE are illustrated in Figures 13(a) and 13(b), 

respectively. It was found that all decision tree 

models had presented a low error compared to that 

of neural network models. This indicates the better 

predictive performance of decision tree models. By 

comparing the decision tree models, it was 

observed that ensembled models showed better 

results than that of the individual model. Moreover, 

among all other ensembled models, the random 

forest model exhibited the lowest error difference 

between experimental and predicted values. The 

Taylor diagram was used to compare all models, as 

shown in Figure 14. The random forest 

outperforms other models with a higher coefficient 

of determination of 0.91, followed by DT 

Bootstrap aggregating (R2 = 0.90) and DT adaptive 

boosting (R2 = 0.89). Similarly, the low RMSE of 

random forest, DT Bootstrap aggregating, and DT 

adaptive boosting indicate the better performance 

of these models compared to all other models. 

Therefore, it can be concluded that the higher R2 

and least error values of ensembled decision tree 

models provide more reliable results than the other 

machine learning models.  

 
Fig. 12 – K-Fold cross-validation [31] 
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(a) MAE 

 
(b) RMSE 

Fig. 13 – K-fold cross-validation of all models: (a) MAE; (b) RMSE 
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Fig. 14 – Taylor diagram for comparison between all models with RMSE and R2 

A total of six statistical indicators were used 

to evaluate the model performance, i.e., mean 

absolute error (MAE), root mean square error 

(RSME), correlation coefficient (R2), relative root 

mean square error (RRMSE), performance index 

(PI), and Nash Sutcliffe efficiency (NSE)  [43, 44]. 

NSE ranges from negative infinity to one, whereas 

one indicates perfect model fit. The MAE, RMSE, 

NSE, and R2 are often employed in modeling, with 

the caution that the MAE must be smaller than the 

RMSE in order for the models to have higher 

predictive accuracy. When NSE exceeds 0.65, a 

correlation is regarded as very good, while the 

model is deemed excellent when R2 is greater than 

0.8, with RMSLE approaching zero [32, 45]. 

Models must have a PI of less than 0.2 to work well. 

The RRMSE percent is between 0 and 10% for 

models with exceptional and outstanding 

performance [46, 47]. Table 3 shows the 

mathematical formulae for the statistical indicators 

stated above and the permissible ranges for each of 

these indicators. 

Table 3. Statistical checks and acceptance criteria 
Statistical checks Acceptance criteria Reference 

MAE =  
1

n
∑|Expi − Predictedi|

n

i=1

 
MAE < RMSE [46, 47] 

RMSE =  √
∑ (Predicted − Expi)

2n
i=1

N
 

R2 =
∑ (Expi − Expi)   (Predictedi − Predictedi

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅n
i=1 )

√∑ (Expi − Expi)
2n

i=1  ∑ (Predictedi − Predictedi
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2n

i=1

 
For good model > 0.80 [46-48] 

RRMSE (%) =  
1

|e|
√

∑ (Expi − Predictedi)
2n

i=1

n
 ×  100 

0-10% for excellent model 

11-20% for good model 

[46, 47] 

PI =
RRMSE

1 + R
 

For good model < 0.2 [46, 47] 

NSE = 1 − 
∑ (Expi − Predictedi)

2n
i=1

∑ (Expi − Expi)
2n

i=1

 
For very good model > 0.65 [47] 
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The various statistical checks were used to 

evaluate the performance of models, as presented 

in Table 2. The MLPNN, MLPNN Bootstrap 

aggregating, and MLPNN adaptive boosting had a 

higher error and lower efficiency than other 

decision tree-based models. The reason is already 

discussed in Section 4.  The lower value of MAE, 

RRMSE, PI represents the higher accuracy of 

models, while a higher value of NSE denotes the 

enhanced estimation efficiency of models in Figure 

15. It was observed that random forest (RRMSE = 

4.68, PI = 0.02, NSE = 0.83) was an accurate 

machine learning technique with better-predicting 

capabilities of UHPC compressive strength as 

compared to that of all other models. Afterward, 

the DT Bootstrap aggregating followed by DT 

adaptive boosting exhibited better performance, as 

evident from RRMSE, PI, and NSE values.    

 

Fig. 15 – Statistical checks by MAE, RRMSE, PI, and NSE 

6. Limitations, challenges, and future directions  

The scholars should be aware of some 

limitations and challenges regarding machine 

learning algorithms. The first challenge is choosing 

the appropriate machine learning algorithm, which 

is not an easy task for researchers of the concrete 

engineering community who are unfamiliar with 

machine learning. Numerous machine learning 

methods have been implemented for different types 

of concrete, but no consensus has been reached. 

Some studies reported that decision tree-based 

models outperform neural network-based models, 

while others reported the opposite results [49]. 

Although several comparison and benchmarking 

studies have been conducted in the literature to 

determine the most appropriate algorithms for 

various types of concrete, the results are still 

inconsistent. The inconsistency was for the reason 

that different databases/mix proportions were used 

to predict the performance of the same materials. It 

is worth mentioning that the reliability of these 

models is greatly dependent on the selected 

database/mix proportions used for the evaluation, 

which makes the scholars reluctant to use machine 

learning approach. Given that each of the machine 

learning algorithms outlined above has distinct 

benefits and disadvantages, the best appropriate 

model is chosen depending on a variety of 

variables. The nature of the link between the 

components in concrete and its mechanical 

strength is a significant aspect influencing the 

model selection. If this connection is very 

nonlinear and impacted by various factors, 

utilizing models such as neural network-based 

models would be a smart choice due to their 

superior capacity to solve problems in nonlinear 

environments with a low error rate [23]. However, 

decision trees algorithms can be used when model 

transparency is necessary because they create 

explicit mathematical formulae that accurately 

represent the physical link between inputs and 

outputs [23]. While individual machine learning 

models are still less accurate than ensemble models, 

using ensemble models can improve accuracy but 

with increased computation time and model 

complexity. As a result, users without any 

background knowledge of machine learning, 
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particularly concrete engineers and practitioners, 

should compare and test their produced machine 

learning-based models before proposing them for 

the practical application of a particular material. 

Therefore, this study examined a comparative 

evaluation of a wide array of neural network-based 

approaches and decision tree-based approaches of 

machine learning algorithms and their relative 

efficacy in predicting the compressive strength of 

UHPC. The database used in this investigation was 

restricted to 271 mix proportions. Indeed, 

appropriate database handling and monitoring are 

required since they are essential parts of 

engineering fields. The recommended model for 

the prediction of compressive strength was random 

forest from the present investigation. Random 

forest can be used to calculate the compressive 

strength of different types of concrete but results 

might be different because of the reasons 

mentioned above. 

The challenging task associated with machine 

learning algorithms is selecting the appropriate 

hyperparameters. Indeed, each machine learning 

method contains various hyperparameters that may 

be adjusted to increase the model's accuracy and/or 

training speed. As a result, they must be fine-tuned 

during the testing and validation stages to get the 

best values. This is also a problem for concrete 

engineers and practitioners unfamiliar with 

machine learning. Another challenge with machine 

learning algorithms is their "black box" feature, 

making it difficult to grasp how they operate. As a 

result, a trade-off between accuracy and 

interpretability is essential. In other words, 

complicated models are necessary for some 

applications to achieve more accuracy; knowing 

how the algorithm makes decisions is critical 

before suggesting a machine learning-based model 

for practical usage. 

Although this study used a diverse variety of 

data sets with 14 input variables, the database and 

input parameters should be expanded to improve 

the responsiveness of the utilized models. 

Additionally, this research focused exclusively on 

compressive strength prediction and neglected the 

tensile, flexural, and ductility of UHPC. 

7. Conclusions  

UHPC is one of the most efficient 

construction materials used in many civil 

engineering applications. However, estimating the 

compressive strength of UHPC is still a 

challenging task because of the high complexity of 

its mixture. Recently, the Artificial Intelligence (AI) 

methods have shown more precise results for 

solving classification and regression problems than 

conventional methods. Therefore, the present study 

has employed eight advanced machine learning 

techniques for predicting the compressive strength 

of UHPC. The methods consist of multi-layer 

perceptron neural network (MLPNN), MLPNN 

Bootstrap aggregating (MLPNN-BA), MLPNN 

adaptive boosting (MLPNN-AB), Gradient 

boosting (GB), Decision tree (DT), DT Bootstrap 

aggregating (DT-BA), DT adaptive boosting (DT-

AB) and Random Forest (RNF). Six statistical 

indicators were used to assess the validity and 

performance of proposed models, and an optimal 

model is recommended for estimating the 

compressive strength of UHPC. The following 

conclusions are drawn: 

• Decision tree-based models presented a higher 

accuracy for estimating the compressive 

strength of UHPC than neural network-based 

models.  

• Each ensembled machine learning model with 

twenty sub-models presented more accurate 

and precise estimation for compressive 

strength prediction than an individual model. 

• The ensembled decision tree models, i.e., DT-

BA, DT-AB, and RNF, presented acceptable 

results for k-fold cross-validation with low 

error values of MAE and RMSE and were 

considered as suitable models for estimating 

the compressive strength of UHPC. 

• The error range of mean absolute error (MAE), 

root mean square error (RSME), relative root 

mean square error (RRMSE), and performance 

index (PI) error range for ensembles decision 

tree machine learning models were 

significantly lower as compared to individual 

machine learning models (DT and MLPNN) 

and other neural network-based models 

(MLPNN-BA and MLPNN-AB).  

• The coefficient of determination (R2) and Nash 

Sutcliffe efficiency (NSE) values for 

ensembled decision tree-based models was in 

the acceptable range of 0.89-0.91 and 0.78-

0.83, respectively. The higher R2 and NSE 

values of decision tree-based models indicated 

the better predictive accuracy for estimating 

the compressive strength of UHPC.  

• The better predictive accuracy of ensembled 

decision tree models (DT-BA, DT-AB, and 

RNF) with the low error was observed.  From 

the overall comparison of all models, it was 

found that the random forest was the most 

effective and reliable advanced machine 

learning technique compared to all the other 

models.  

Based on the above study, it is evident that 

Artificial Intelligence techniques can predict the 

compressive strength of UHPC. The validation of 
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models by statistical checks presented a good 

agreement with the low error between the 

estimated and experimental values. Thus, machine 

advanced learning techniques can forecast the 

experimental values from the raw 

materials/ingredients that could minimize the 

experimental effort (particularly during trials), cost, 

and time. However, there are still certain 

limitations, and challenges as discussed above in 

Section 6, which need to be considered in future.    
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